Distinguishing index of Kronecker product of two graphs
نویسندگان
چکیده
منابع مشابه
Distinguishing number and distinguishing index of natural and fractional powers of graphs
The distinguishing number (resp. index) $D(G)$ ($D'(G)$) of a graph $G$ is the least integer $d$ such that $G$ has an vertex labeling (resp. edge labeling) with $d$ labels that is preserved only by a trivial automorphism. For any $n in mathbb{N}$, the $n$-subdivision of $G$ is a simple graph $G^{frac{1}{n}}$ which is constructed by replacing each edge of $G$ with a path of length $n$...
متن کاملWiener Polarity Index of Tensor Product of Graphs
Mathematical chemistry is a branch of theoretical chemistry for discussion and prediction of the molecular structure using mathematical methods without necessarily referring to quantum mechanics. In theoretical chemistry, distance-based molecular structure descriptors are used for modeling physical, pharmacologic, biological and other properties of chemical compounds. The Wiener Polarity index ...
متن کاملVertex Censored Stochastic Kronecker Product Graphs
Stochastic Kronecker Product Graphs are an interesting and useful class of Generative Network Models. They can be fitted using a fast Maximum Likelihood Estimator and reproduce many important statistical properties commonly found in large real-world networks. However, they suffer from an unfortunate drawback: the need to pad the Stochastic Kronecker Product Graph with isolated vertices. To addr...
متن کاملThe Distinguishing Index of Infinite Graphs
The distinguishing index D′(G) of a graph G is the least cardinal d such that G has an edge colouring with d colours that is only preserved by the trivial automorphism. This is similar to the notion of the distinguishing number D(G) of a graph G, which is defined with respect to vertex colourings. We derive several bounds for infinite graphs, in particular, we prove the general bound D′(G) 6 ∆(...
متن کاملOn Neighbor-Distinguishing Index of Planar Graphs
A proper edge colouring of a graph G without isolated edges is neighbour-distinguishing if any two adjacent vertices have distinct sets consisting of colours of their incident edges. The neighbour-distinguishing index of G is the minimum number ndi(G) of colours in a neighbour-distinguishing edge colouring of G. According to a conjecture by Zhang, Liu and Wang (2002), ndi(G) ≤ ∆(G) + 2 provided...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Graph Theory and Applications
سال: 2021
ISSN: 2338-2287
DOI: 10.5614//ejgta.2021.9.1.7